Generic structures

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences and Cardinal Stefan Wyszyński University in Warsaw, Poland

47th Winter School in Abstract Analysis Hejnice, 26.01–2.02.2019

- Preliminaries
- Generic objects
- Fraïssé categories
- Fraïssé theory
- More examples

2 Part 2

- Weak Fraïssé theory
- Examples
- Automorphism groups

Part 3

- Non-universal automorphism groups
- Uncountable Fraïssé limits
- Continuous Fraïssé limits

Part 1

æ

<ロ> (日) (日) (日) (日) (日)

A category R consists of

• a class of objects Obj(£),

э

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{A,B\in Obj(\mathfrak{K})} \mathfrak{K}(A,B)$, where $f \in \mathfrak{K}(A,B)$ means A is the *domain* of f and B is the *codomain* of f,

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{A,B\in Obj(\mathfrak{K})} \mathfrak{K}(A,B)$, where $f \in \mathfrak{K}(A,B)$ means A is the *domain* of f and B is the *codomain* of f,
- a partial associative composition operation ∘ defined on arrows, where *f* ∘ *g* is defined ⇔ the domain of *g* coincides with the domain of *f*.

A category R consists of

- a class of objects Obj(£),
- a class of arrows $\bigcup_{A,B\in Obj(\mathfrak{K})} \mathfrak{K}(A,B)$, where $f \in \mathfrak{K}(A,B)$ means A is the *domain* of f and B is the *codomain* of f,
- a partial associative composition operation ∘ defined on arrows, where *f* ∘ *g* is defined ⇐⇒ the domain of *g* coincides with the domain of *f*.

Furthermore, for each $A \in \text{Obj}(\mathfrak{K})$ there is an *identity* $\text{id}_A \in \mathfrak{K}(A, A)$ satisfying $\text{id}_A \circ g = g$ and $f \circ \text{id}_A = f$ for $f \in \mathfrak{K}(A, X)$, $g \in \mathfrak{K}(Y, A)$, $X, Y \in \text{Obj}(\mathfrak{K})$.

Definition

A sequence in \Re is a functor \vec{x} from ω into \Re .

Definition

A sequence in \Re is a functor \vec{x} from ω into \Re .

$$X_0 \xrightarrow{x_0^1} X_1 \xrightarrow{x_1^2} X_2 \xrightarrow{x_2^3} \cdots$$

э

Definition

A sequence in \Re is a functor \vec{x} from ω into \Re .

$$X_0 \xrightarrow{x_0^1} X_1 \xrightarrow{x_1^2} X_2 \xrightarrow{x_2^3} \cdots$$

Definition

Let \vec{x} be a sequence in \mathfrak{K} . The colimit of \vec{x} is a pair $\langle X, \{x_n^{\infty}\}_{n \in \mathbb{N}} \rangle$ with $x_n^{\infty} \colon X_n \to X$ satisfying:

$$\ \ \, \mathbf{x}_n^\infty = x_m^\infty \circ x_n^m \text{ for every } n < m.$$

If ⟨Y, {y_n[∞]}_{n∈N}⟩ with y_n[∞]: X_n → Y satisfies y_n[∞] = y_m[∞] ∘ y_n^m for every n < m then there is a unique arrow f: X → Y satisfying f ∘ x_n[∞] = y_n[∞] for every n ∈ N.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows.

W.Kubiś (http://www.math.cas.cz/kubis/)

(4) (3) (4) (4) (4)

< 6 b

Definition

The Banach-Mazur game BM (\Re) played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in Obj(\Re)$.

4 3 > 4 3

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\mathfrak{K})$. Then Odd chooses $A_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$.

Definition

The Banach-Mazur game BM (\Re) played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in Obj(\Re)$. Then Odd chooses $A_1 \in Obj(\Re)$ together with a \Re -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in Obj(\Re)$ together with a \Re -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$.

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in Obj(\mathfrak{K})$. Then Odd chooses $A_1 \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k+1} \colon A_{2k} \to A_{2k+1}$. And so on...

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in Obj(\mathfrak{K})$. Then Odd chooses $A_1 \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k} \colon A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in Obj(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k+1} \colon A_{2k} \to A_{2k+1}$. And so on... The result of a play is a sequence \vec{a} :

$$A_0 \xrightarrow{a_0^1} A_1 \longrightarrow \cdots \longrightarrow A_{2k-1} \xrightarrow{a_{2k-1}^{2k}} A_{2k} \longrightarrow \cdots$$

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

э

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in \text{Obj}(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

A (10) A (10)

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in \text{Obj}(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A f.-generic object, if exists, is unique up to isomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General assumption: $\mathfrak{K} \subseteq \mathfrak{L}$.

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A f.-generic object, if exists, is unique up to isomorphism.

Proof.

The rules for Eve and Odd are the same.

Examples

2

イロト イヨト イヨト イヨト

Example

Let \mathfrak{K} be the category of all finite linearly ordered sets with embeddings.

Then $\langle \mathbb{Q}, < \rangle$ is \mathfrak{K} -generic.

< ロ > < 同 > < 回 > < 回 >

Example

Let \Re be the category of all finite linearly ordered sets with embeddings.

Then $\langle \mathbb{Q}, < \rangle$ is \mathfrak{K} -generic.

Example

Let \Re be the category of all finite graphs with embeddings. Then the Rado graph $R = \langle \mathbb{N}, E_R \rangle$ is \Re -generic, where k < n are adjacent if and only if the *k*th digit in the binary expansion of *n* is one.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Let \Re be the category of all finite linearly ordered sets with embeddings.

Then $\langle \mathbb{Q}, < \rangle$ is \mathfrak{K} -generic.

Example

Let \Re be the category of all finite graphs with embeddings. Then the Rado graph $R = \langle \mathbb{N}, E_R \rangle$ is \Re -generic, where k < n are adjacent if and only if the *k*th digit in the binary expansion of *n* is one.

Example

Let \Re be the category of all finite acyclic graphs with embeddings. Then the countable everywhere infinitely branching tree is \Re -generic.

イロト 不得 トイヨト イヨト

Theorem (Urysohn, 1927)

There exists a unique Polish metric space \mathbb{U} with the following property:

(E) For every finite metric spaces $A \subseteq B$, every isometric embedding $e: A \to \mathbb{U}$ can be extended to an isometric embedding $f: B \to \mathbb{U}$.

(B)

Theorem (Urysohn, 1927)

There exists a unique Polish metric space \mathbb{U} with the following property:

 (E) For every finite metric spaces A ⊆ B, every isometric embedding e: A → U can be extended to an isometric embedding f: B → U.

Furthermore:

- Every separable metric space embeds into U.
- Every isometry between finite subsets of U extends to a bijective isometry of U.

(B)

Theorem (Urysohn, 1927)

There exists a unique Polish metric space \mathbb{U} with the following property:

 (E) For every finite metric spaces A ⊆ B, every isometric embedding e: A → U can be extended to an isometric embedding f: B → U.

Furthermore:

- Every separable metric space embeds into U.
- Every isometry between finite subsets of U extends to a bijective isometry of U.

Theorem

Let \mathfrak{M}_{fin} be the category of finite metric spaces with isometric embeddings. Then the Urysohn space \mathbb{U} is \mathfrak{M}_{fin} -generic.

3

イロト 不得 トイヨト イヨト

The amalgamation property

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 11/66

2

The amalgamation property

Definition

We say that \Re has amalgamations at $Z \in \text{Obj}(\Re)$ if for every \Re -arrows $f: Z \to X, g: Z \to Y$ there exist \Re -arrows $f': X \to W, g': Y \to W$ such that $f' \circ f = g' \circ g$.

3

The amalgamation property

Definition

We say that \Re has amalgamations at $Z \in \text{Obj}(\Re)$ if for every \Re -arrows $f: Z \to X, g: Z \to Y$ there exist \Re -arrows $f': X \to W, g': Y \to W$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property (AP) if it has amalgamations at every $Z \in Obj(\Re)$.

Theorem (Universality)

Assume \Re has the AP and U is \Re -generic. Then for every $X = \lim \vec{x}$, where \vec{x} is a sequence in \Re , there exists an arrow

$$e: X \rightarrow U.$$

< 回 > < 三 > < 三 >

Theorem (Universality)

Assume \Re has the AP and U is \Re -generic. Then for every $X = \lim \vec{x}$, where \vec{x} is a sequence in \Re , there exists an arrow

 $e: X \rightarrow U.$

Example

Let \mathfrak{K} be the category of all finite linear graphs with embeddings. Then $\langle \mathbb{Z}, E \rangle$ is \mathfrak{K} -generic, where $xEy \iff |x - y| = 1$. On the other hand, $\langle \mathbb{Z}, E \rangle \oplus \langle \mathbb{Z}, E \rangle \nleftrightarrow \langle \mathbb{Z}, E \rangle$.

Definition

A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u} \colon \omega \to \mathfrak{K}$ satisfying the following conditions:

< ロ > < 同 > < 回 > < 回 >

Definition

A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u} \colon \omega \to \mathfrak{K}$ satisfying the following conditions:

• For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.

(B)

Definition

A Fraïssé sequence in \Re is a sequence $\vec{u} : \omega \to \Re$ satisfying the following conditions:

- For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.
- **2** For every $n \in \omega$, for every \mathfrak{K} -arrow $f: U_n \to Y$ there are m > n and a \mathfrak{K} -arrow $g: Y \to U_m$ such that $g \circ f = u_n^m$.

4 3 5 4 3 5 5

Definition

A Fraïssé sequence in \Re is a sequence $\vec{u} : \omega \to \Re$ satisfying the following conditions:

- For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.
- **2** For every $n \in \omega$, for every \mathfrak{K} -arrow $f: U_n \to Y$ there are m > n and a \mathfrak{K} -arrow $g: Y \to U_m$ such that $g \circ f = u_n^m$.

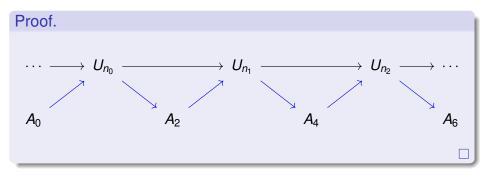
$$U_0 \longrightarrow \cdots \longrightarrow U_n \xrightarrow{u_n^m} U_m \longrightarrow \cdots$$

4 3 5 4 3 5 5

Let \vec{u} be a Fraïssé sequence in \Re and let $U = \lim \vec{u}$. Then U is \Re -generic.

W.Kubiś

Let \vec{u} be a Fraïssé sequence in \Re and let $U = \lim \vec{u}$. Then U is \Re -generic.



ś (http://www.math.cas.cz/kubis/)	Generic objects	26.01-2.02.2019	14 / 66
		20.01 2.02.2010	

Fraïssé categories

Definition

A Fraïssé category is a countable category *R* satisfying:

• For every $X, Y \in \text{Obj}(\mathfrak{K})$ there is $U \in \text{Obj}(\mathfrak{K})$ such that

 $\mathfrak{K}(X, U) \neq \emptyset \neq \mathfrak{K}(Y, U).$

3

(B)

Fraïssé categories

Definition

A Fraïssé category is a countable category \Re satisfying:

• For every $X, Y \in \text{Obj}(\mathfrak{K})$ there is $U \in \text{Obj}(\mathfrak{K})$ such that

 $\mathfrak{K}(X, U) \neq \emptyset \neq \mathfrak{K}(Y, U).$

A has the amalgamation property.

(B)

< 6 b

Assume $\mathfrak{K} \subseteq \mathfrak{L}$ is such that every sequence in \mathfrak{K} converges in \mathfrak{L} and \mathfrak{K} is a Fraïssé category. Then there exists a \mathfrak{K} -generic object in \mathfrak{L} .

Assume $\mathfrak{K} \subseteq \mathfrak{L}$ is such that every sequence in \mathfrak{K} converges in \mathfrak{L} and \mathfrak{K} is a Fraïssé category. Then there exists a \mathfrak{K} -generic object in \mathfrak{L} .

Proof.

Let \mathbb{P} be the poset of all finite sequences in \mathfrak{K} , i.e., covariant functors from some $n \in \omega$ into \mathfrak{K} . The ordering is end-extension.

3

Assume $\mathfrak{K} \subseteq \mathfrak{L}$ is such that every sequence in \mathfrak{K} converges in \mathfrak{L} and \mathfrak{K} is a Fraïssé category. Then there exists a \mathfrak{K} -generic object in \mathfrak{L} .

Proof.

Let \mathbb{P} be the poset of all finite sequences in \mathfrak{K} , i.e., covariant functors from some $n \in \omega$ into \mathfrak{K} . The ordering is end-extension. Let

$$\mathscr{D} = \{ D_{n,f} \colon n \in \omega, \ f \in \mathfrak{K} \} \cup \{ E_{n,A} \colon n \in \omega, \ X \in \mathsf{Obj}(\mathfrak{K}) \},\$$

where

$$D_{n,f} = \{ \vec{x} \in \mathbb{P} \colon X_n = \mathsf{dom}(f) \implies (\exists m > n)(\exists g) \ g \circ f = x_n^m \},$$
$$E_{n,A} = \{ \vec{x} \in \mathbb{P} \colon (\exists m \ge n) \ \mathfrak{K}(A, X_m) \neq \emptyset \}.$$

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Assume $\mathfrak{K} \subseteq \mathfrak{L}$ is such that every sequence in \mathfrak{K} converges in \mathfrak{L} and \mathfrak{K} is a Fraïssé category. Then there exists a \mathfrak{K} -generic object in \mathfrak{L} .

Proof.

Let \mathbb{P} be the poset of all finite sequences in \mathfrak{K} , i.e., covariant functors from some $n \in \omega$ into \mathfrak{K} . The ordering is end-extension. Let

$$\mathscr{D} = \{ D_{n,f} \colon n \in \omega, \ f \in \mathfrak{K} \} \cup \{ E_{n,A} \colon n \in \omega, \ X \in \mathsf{Obj}(\mathfrak{K}) \},\$$

where

$$\mathcal{D}_{n,f} = \{ ec{x} \in \mathbb{P} \colon X_n = \mathsf{dom}(f) \implies (\exists m > n)(\exists g) \ g \circ f = x_n^m \} \}$$

$$\mathsf{E}_{n,\mathsf{A}} = \{ \vec{x} \in \mathbb{P} \colon (\exists m \ge n) \ \mathfrak{K}(\mathsf{A}, X_m) \neq \emptyset \}.$$

Let \vec{u} be the sequence coming from a \mathscr{D} -generic filter/ideal. Then \vec{u} is Fraïssé, therefore $U = \lim \vec{u}$ is \Re -generic.

э

Fraïssé theory

Definition

A Fraïssé class is a class of finite models of a fixed countable language satisfying:

(H) For every $A \in \mathscr{F}$, every model isomorphic to a submodel of A is in \mathscr{F} .

(JEP) Every two models from ${\mathscr F}$ embed into a single model from ${\mathscr F}.$

(AP) ${\mathscr F}$ has the amalgamation property for embeddings.

(CMT) F has countably many isomorphic types.

4 3 5 4 3 5 5

Let \mathscr{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

3

Let \mathscr{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

() \mathscr{F} consists of all isomorphic types of finite submodels of U,

(B)

Let \mathscr{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

- Image: Image:
- every isomorphism of finite submodels of U extends to an automorphism of U (in other words, U is ultra-homogeneous).

Let \mathscr{F} be a Fraïssé class. Then there exists a unique, up to isomorphism, countable model U such that

- Image: Image:
- every isomorphism of finite submodels of U extends to an automorphism of U (in other words, U is ultra-homogeneous).

Conversely, if U is a countable homogeneous model then the class of all models isomorphic to finite submodels of U is Fraïssé.

The model U is called the Fraïssé limit of \mathscr{F} .

More examples

2

イロト イヨト イヨト イヨト

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 20 / 66

2

イロト イヨト イヨト イヨト

Fix a compact 0-dimensional space *K*. Define the category \mathfrak{K}_K as follows.

э

< ロ > < 同 > < 回 > < 回 >

Fix a compact 0-dimensional space *K*. Define the category \Re_K as follows.

The objects are continuous mappings $f: K \rightarrow S$ with *S* finite.

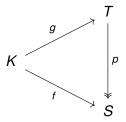
< ロ > < 同 > < 回 > < 回 >

Fix a compact 0-dimensional space *K*. Define the category \mathfrak{K}_K as follows.

The objects are continuous mappings $f: K \to S$ with S finite. An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$ satisfying $p \circ g = f$.

Fix a compact 0-dimensional space *K*. Define the category \Re_K as follows.

The objects are continuous mappings $f: K \to S$ with S finite. An arrow from $f: K \to S$ to $g: K \to T$ is a surjection $p: T \to S$ satisfying $p \circ g = f$.

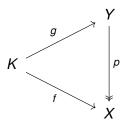


Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional.

Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional. An \mathfrak{L}_K -arrow from $f \colon K \to X$ to $g \colon K \to Y$ is a continuous surjection $p \colon Y \to X$ satisfying $p \circ g = f$.

A (10) A (10)

Let \mathfrak{L}_K be the category whose objects are continuous mappings $f \colon K \to X$ with X metrizable compact 0-dimensional. An \mathfrak{L}_K -arrow from $f \colon K \to X$ to $g \colon K \to Y$ is a continuous surjection $p \colon Y \to X$ satisfying $p \circ g = f$.



Theorem (Bielas, Walczyńska, K.)

Let 2^{ω} denote the Cantor set. A continuous mapping $\eta: K \to 2^{\omega}$ is \mathfrak{K}_{K} -generic $\iff \eta$ is a topological embedding and $\eta[K]$ is nowhere dense in 2^{ω} .

Theorem (Bielas, Walczyńska, K.)

Let 2^{ω} denote the Cantor set. A continuous mapping $\eta: K \to 2^{\omega}$ is \mathfrak{K}_{K} -generic $\iff \eta$ is a topological embedding and $\eta[K]$ is nowhere dense in 2^{ω} .

Corollary (Knaster & Reichbach 1953)

Let $h: A \to B$ be a homeomorphism between closed nowhere dense subsets of 2^{ω} . Then there exists a homeomorphism $H: 2^{\omega} \to 2^{\omega}$ such that

$$H \upharpoonright A = h.$$

The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

(G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

A B A A B A

The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

(G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space \mathbb{G} uniquely up to linear isometries.

3

イロト 不得 トイヨト イヨト

The Gurarii space

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} with the following property.

(G) For every ε > 0, for every finite-dimensional normed spaces E ⊆ F, for every linear isometric embedding e: E → G there exists a linear ε-isometric embedding f: F → G such that f ↾ E = e.

Theorem (Lusky 1976)

Among separable spaces, property (G) determines the space \mathbb{G} uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.

3

イロト 不得 トイヨト イヨト

The Gurarii space \mathbb{G} is generic over the category $\mathfrak{B}_{\mathsf{fd}}$ of finite-dimensional normed spaces with linear isometric embeddings.

The Gurarii space \mathbb{G} is generic over the category \mathfrak{B}_{fd} of finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)

Let *X*, *Y* be finite-dimensional normed spaces, let $f: X \to Y$ be an ε -isometry with $0 < \varepsilon < 1$. Then there exist a finite-dimensional normed space *Z* and isometric embeddings $i: X \to Z, j: Y \to Z$ such that

$$\|i-j\circ f\|\leqslant \varepsilon.$$

The pseudo-arc

Let $\ensuremath{\mathfrak{I}}$ be the category of all continuous surjections from the unit interval [0,1] onto itself.

4 3 > 4 3

< 6 b

Let \Im be the category of all continuous surjections from the unit interval [0, 1] onto itself. Let \mathfrak{C} be the category of all chainable continua.

4 3 > 4 3

Let \Im be the category of all continuous surjections from the unit interval [0, 1] onto itself. Let \mathfrak{C} be the category of all chainable continua.

Theorem

The pseudo-arc is *J*-generic.

Part 2

æ

<ロ> <四> <ヨ> <ヨ>

Weak Fraïssé sequences

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 27/66

æ

Weak Fraïssé sequences

Definition

A sequence $\vec{u}: \omega \to \Re$ is a weak Fraïssé sequence if it satisfies the following conditions:

• For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.

4 3 5 4 3 5 5

< 6 b

Weak Fraïssé sequences

Definition

A sequence $\vec{u}: \omega \to \Re$ is a weak Fraïssé sequence if it satisfies the following conditions:

• For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.

So reverse *n* ∈ ω there exists *n*^{*} > *n* such that for every \Re -arrow *f*: *U_{n*}* → *Y* there are *m* > *n*^{*} and a \Re -arrow *g*: *Y* → *U_m* with $g \circ f \circ u_n^{n^*} = u_n^m$.

Weak Fraïssé sequences

Definition

A sequence $\vec{u}: \omega \to \Re$ is a weak Fraïssé sequence if it satisfies the following conditions:

• For every $A \in \text{Obj}(\mathfrak{K})$ there is *n* such that $\mathfrak{K}(A, U_n) \neq \emptyset$.

So reverse *n* ∈ ω there exists *n*^{*} > *n* such that for every \Re -arrow *f*: *U_{n*}* → *Y* there are *m* > *n*^{*} and a \Re -arrow *g*: *Y* → *U_m* with $g \circ f \circ u_n^{n^*} = u_n^m$.



A B A A B A

Theorem

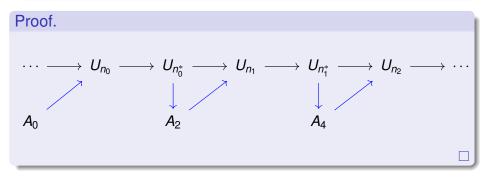
Assume \vec{u} is a weak Fraïssé sequence in \Re and $U = \lim \vec{u}$. Then U is \Re -generic.

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

Assume \vec{u} is a weak Fraïssé sequence in \Re and $U = \lim \vec{u}$. Then U is \Re -generic.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weakenings of amalgamation

Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $Z \in Obj(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that \Re has amalgamations at Z'.

A (10) A (10)

Weakenings of amalgamation

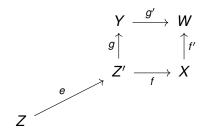
Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $Z \in Obj(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that \Re has amalgamations at Z'.

Definition (Ivanov 1999; Kechris & Rosendal 2007; Kruckman 2016)

We say that \Re has the weak amalgamation property (WAP) if for every $Z \in Obj(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that for every \Re -arrows $f: Z' \to X, g: Z' \to Y$ there exist \Re -arrows $f': X \to W, g': Y \to W$ such that $f' \circ f \circ e = g' \circ g \circ e$.

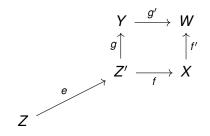
CAP and WAP



2

イロト イヨト イヨト イヨト

CAP and WAP



Proposition

Finite graphs of vertex degree \leq 2 have the CAP.

< ロ > < 同 > < 回 > < 回 >

Weak injectivity

Definition

An object $V \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -injective if

- every \Re -object has an \mathfrak{L} -arrow into V, and
- for every \mathfrak{L} -arrow $e: A \to V$ there exists a \mathfrak{K} -arrow $i: A \to B$ such that for every \mathfrak{K} -arrow $f: B \to Y$ there is an \mathfrak{L} -arrow $g: Y \to V$ satisfying $g \circ f \circ i = e$.

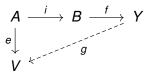
4 3 5 4 3 5 5

Weak injectivity

Definition

An object $V \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -injective if

- every *R*-object has an *L*-arrow into *V*, and
- for every \mathfrak{L} -arrow $e: A \to V$ there exists a \mathfrak{K} -arrow $i: A \to B$ such that for every \mathfrak{K} -arrow $f: B \to Y$ there is an \mathfrak{L} -arrow $g: Y \to V$ satisfying $g \circ f \circ i = e$.



EN 4 EN

Let \Re be a countable directed category of finitely generated models with embeddings.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

(a) There exists a *A*-generic model.

(B)

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

- (a) There exists a *R*-generic model.
- (b) R has the WAP.

3

(B)

Let \Re be a countable directed category of finitely generated models with embeddings. The following conditions are equivalent:

- (a) There exists a *A*-generic model.
- (b) R has the WAP.

Theorem (Krawczyk & K. 2016)

Let \Re be as above and let U be a countably generated model. The following properties are equivalent:

- (a) U is *R*-generic.
- (b) Eve does not have a winning strategy in BM (\mathfrak{K}, U) .
- (c) U is weakly *R*-injective.

The first example of a weak Fraïssé class with no CAP

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 33 / 66

★ ∃ > < ∃ >

Image: Image:

The first example of a weak Fraïssé class with no CAP

• J.-F. PABION, *Relations préhomogènes*, C. R. Acad. Sci. Paris Sér. A-B 274 (1972) A529–A531.

A B >
A B >

The first example of a weak Fraïssé class with no CAP

 J.-F. PABION, *Relations préhomogènes*, C. R. Acad. Sci. Paris Sér. A-B 274 (1972) A529–A531.

A quote from Pabion's paper:

3º M. Pouzèt m'a communiqué l'exemple suivant de relation uniformément préhomogène et non pseudo-homogène. Sur Q, définir R (x, y, z)par x < y, x < z et $y \neq z$.

(*) Séance du 7 février 1972.

(1) J. P. CALAIS, Comples rendus, 265, série A, 1967, p. 2.

(*) R. FRAïssé, Cours de Logiques mathématiques, I, Gauthiers-Villars, Paris, 1967, deuxième édition 1971.

(3) G. KREISEL, The theory of models, North-Holland, 1970.

(*) P. LINSDTROM, Theoria, 30, 1964, p. 183-196.

(5) R. L. VAUGHT, Bull. Amer. Math. Soc., 69, p. 229-313.

Universilé Claude Bernard, Mathématiques, 43, boulevard du Onze-Novembre 1918, 69-Villeurbanne, Rhône.

< ロ > < 同 > < 回 > < 回 >

26.01-2.02.2019 33 / 66

Weak Fraïssé theory

Definition

A weak Fraïssé class is a class \mathscr{F} of finitely generated models of a fixed countable signature, closed under isomorphisms, having with many types, satisfying (JEP) and (WAP).

A (10) A (10)

Weak Fraïssé theory

Definition

A weak Fraïssé class is a class \mathscr{F} of finitely generated models of a fixed countable signature, closed under isomorphisms, having with many types, satisfying (JEP) and (WAP).

Theorem

Let \mathscr{F} be a weak Fraïssé class. Then there exists a unique countable model U that is weakly \mathscr{F} -injective and weakly homogeneous. Furthermore, U is \mathscr{F} -generic.

Weak Fraïssé theory

Definition

A weak Fraïssé class is a class \mathscr{F} of finitely generated models of a fixed countable signature, closed under isomorphisms, having with many types, satisfying (JEP) and (WAP).

Theorem

Let \mathscr{F} be a weak Fraïssé class. Then there exists a unique countable model U that is weakly \mathscr{F} -injective and weakly homogeneous. Furthermore, U is \mathscr{F} -generic.

Conversely, given a countable weakly homogeneous model M, its age

 $\mathscr{F} = \{A: A \text{ is finitely generated and embeddable into } M\}$

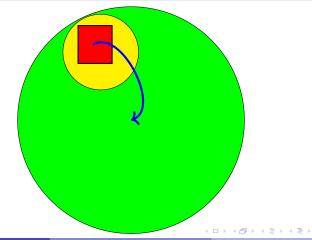
is a weak Fraïssé class.

Definition

A structure *M* is weakly homogeneous if for every finitely generated substructure $A \subseteq M$ there is a bigger finitely generated substructure $B \subseteq M$ containing *A* such that every embedding $e: A \rightarrow M$ extendable to *B* extends to an automorphism of *M*.

Definition

A structure *M* is weakly homogeneous if for every finitely generated substructure $A \subseteq M$ there is a bigger finitely generated substructure $B \subseteq M$ containing *A* such that every embedding $e: A \rightarrow M$ extendable to *B* extends to an automorphism of *M*.



Some references

- W. KUBIŚ, Weak Fraïssé categories, preprint, arXiv:1712.03300
- A. KRAWCZYK, W. KUBIŚ, Games on finitely generated structures, preprint, arXiv:1701.05756

3 + 4 = +

Some references

- W. KUBIŚ, Weak Fraïssé categories, preprint, arXiv:1712.03300
- A. KRAWCZYK, W. KUBIŚ, Games on finitely generated structures, preprint, arXiv:1701.05756

~~~???~~~

- A. IVANOV, Generic expansions of ω-categorical structures and semantics of generalized quantifiers, J. Symbolic Logic 64 (1999) 775–789
- A.S. KECHRIS, C. ROSENDAL, *Turbulence, amalgamation, and generic automorphisms of homogeneous structures*, Proc. Lond. Math. Soc. (3) 94 (2007) 302–350
- Z. KABLUCHKO, K. TENT, *On weak Fraisse limits*, preprint, arXiv:1711.09295

Theorem (Krawczyk, Kruckman, Panagiotopoulos, K. 2018)

There exist continuum many hereditary weak Fraïssé classes of finite graphs without the cofinal AP.

< 6 b

Theorem (Krawczyk, Kruckman, Panagiotopoulos, K. 2018)

There exist continuum many hereditary weak Fraïssé classes of finite graphs without the cofinal AP.

Example

Let \mathscr{G} be the class of all finite acyclic graphs in which no two vertices of degree > 2 are adjacent. Then \mathscr{G} is a weak Fraïssé class failing the CAP.

(B)

Peano continua

Theorem (Bartoš, K. 2018)

Let \Re be a class of non-degenerate Peano continua treated as a category with all continuous surjections. Then the pseudo-arc is \Re^{op} -generic.

 $(\mathfrak{K}^{op} \text{ is the category opposite to } \mathfrak{K}.)$

A B >
A B >
A

Peano continua

Theorem (Bartoš, K. 2018)

Let \Re be a class of non-degenerate Peano continua treated as a category with all continuous surjections. Then the pseudo-arc is \Re^{op} -generic.

(Rop is the category opposite to R.)

Theorem (Kwiatkowska, K. 2017)

The Poulsen simplex is generic over the (opposite) category of finite-dimensional simplices with affine surjections.

Automorphism groups of Fraïssé limits

2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question (Eric Jaligot, 2007)

Let *M* be a countable homogeneous structure. Is it always true that the group Aut(M) contains isomorphic copies of all groups of the form Aut(X), where *X* is a substructure of *M*?

・ 何 ト ・ ヨ ト ・ ヨ ト

Question (Eric Jaligot, 2007)

Let *M* be a countable homogeneous structure. Is it always true that the group Aut(M) contains isomorphic copies of all groups of the form Aut(X), where *X* is a substructure of *M*?

If this is the case, we shall say that Aut(M) is universal.

A B > A B >

Uniform homogeneity

Definition (Kuzeljević, K. 2018)

A structure *M* is uniformly homogeneous if

- M is homogeneous and
- ② for every finite substructure $A \subseteq M$ there exists an extension operator e_A : Aut(A) → Aut(M) such that

$$e_{\mathcal{A}}(g \circ h) = e_{\mathcal{A}}(g) \circ e_{\mathcal{A}}(h)$$

for every $g, h \in Aut(A)$.

A homogeneous digraph that is not uniformly homogeneous

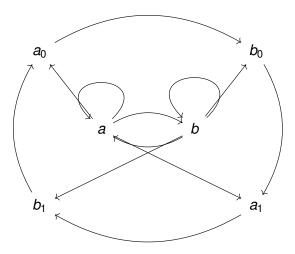
W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 42/66

э

A homogeneous digraph that is not uniformly homogeneous



W.Kubiś (http://www.math.cas.cz/kubis/)

- **A**

Katětov functors

Definition

Let \mathscr{F} be a class of finite structures of the same type and let M be a countable homogeneous structure such that every $A \in \mathscr{F}$ embeds into M and every finite substructure of M is isomorphic to some $A \in \mathscr{F}$. A Katětov functor is a pair $\langle K, \eta \rangle$ such that K assigns to each embedding $e: A \to B$ with $A, B \in \mathscr{F}$ an embedding $K(e): M \to M, \eta$ assigns to each $A \in \mathscr{F}$ an embedding $\eta_A: A \to M$. Furthermore, K is a functor, i.e., $K(\mathrm{id}_A) = \mathrm{id}_M, K(e \circ f) = K(e) \circ K(f)$, and the following diagram commutes

for every embedding $e \colon A \to B$ with $A, B \in \mathscr{F}$.

< ロ > < 同 > < 回 > < 回 >

Theorem (Mašulović & K.)

Assume $\langle \mathscr{F}, M \rangle$ admits a Katětov functor. Then for every substructure X of M there exists a topological group embedding

 e_X : Aut(X) \rightarrow Aut(M).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Mašulović & K.)

Assume $\langle \mathscr{F}, M \rangle$ admits a Katětov functor. Then for every substructure X of M there exists a topological group embedding

 e_X : Aut(X) \rightarrow Aut(M).

Claim (🙁)

Most of the well known homogeneous relational structures admit a Katětov functor.

3

Theorem (Mašulović & K.)

Assume $\langle \mathscr{F}, M \rangle$ admits a Katětov functor. Then for every substructure X of M there exists a topological group embedding

 e_X : Aut $(X) \rightarrow$ Aut(M).

Claim (:::)

Most of the well known homogeneous relational structures admit a Katětov functor.

Theorem (Grebík 2018)

Let \mathscr{F} be the class of all finite complete graphs whose edges are colored, the set of colors is countably infinite, and there is no monochromatic triangle. Then \mathscr{F} is a Fraïssé class with no Katětov functor, yet the

automorphism group of its limit is universal.

э.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Part 3

æ

<ロ> <四> <ヨ> <ヨ>

Non-universal automorphism groups

Theorem (Shelah & K. 2018)

There exists a countable homogeneous relational structure E such that:

- every finite group embeds into Aut(E),
- S_{∞} does not embed into Aut(*E*),
- $S_{\infty} \approx \operatorname{Aut}(X)$ for some $X \subseteq E$.

Furthermore, E is not uniformly homogeneous.

Let \mathfrak{M} be the class of all finite consumer-goods models. Namely, $M \in \mathfrak{M}$ consists of a set C^M of consumers together with a set G^M of goods, and each consumer $c \in C^M$ has a strict preference relation $<_c$ which is just a linear ordering of G^M .

Let \mathfrak{M} be the class of all finite consumer-goods models. Namely, $M \in \mathfrak{M}$ consists of a set C^M of consumers together with a set G^M of goods, and each consumer $c \in C^M$ has a strict preference relation $<_c$ which is just a linear ordering of G^M .

Claim

m is a Fraïssé class.

Let \mathfrak{M} be the class of all finite consumer-goods models. Namely, $M \in \mathfrak{M}$ consists of a set C^M of consumers together with a set G^M of goods, and each consumer $c \in C^M$ has a strict preference relation $<_c$ which is just a linear ordering of G^M .

Claim

m is a Fraïssé class.

Let U be the Fraïssé limit of \mathfrak{M} . Define

$$G_{c} = \{h \in \operatorname{Aut}(U) \colon h(c) = c\},\$$

where $c \in C^U$ is a fixed consumer. Then G_c embeds into Aut($\mathbb{Q}, <$), therefore it is torsion-free.

Let \mathfrak{M} be the class of all finite consumer-goods models. Namely, $M \in \mathfrak{M}$ consists of a set C^M of consumers together with a set G^M of goods, and each consumer $c \in C^M$ has a strict preference relation $<_c$ which is just a linear ordering of G^M .

Claim

m is a Fraïssé class.

Let U be the Fraïssé limit of \mathfrak{M} . Define

$$G_{c} = \{h \in \operatorname{Aut}(U) \colon h(c) = c\},\$$

where $c \in C^U$ is a fixed consumer. Then G_c embeds into Aut($\mathbb{Q}, <$), therefore it is torsion-free.

Clearly, G_c has a countable index in Aut(U).

Sketch of proof (continued).

Claim

Assume G is a group, H is a subgroup of G of index $< \mathfrak{c}$ in G, such that $x^2 \neq 1$ for every $x \in H \setminus \{1\}$. Then $S_{\infty} \nleftrightarrow G$.

```
Sketch of proof (continued).
```

Claim

Assume G is a group, H is a subgroup of G of index $< \mathfrak{c}$ in G, such that $x^2 \neq 1$ for every $x \in H \setminus \{1\}$. Then $S_{\infty} \nleftrightarrow G$.

Proof.

The group \mathbb{Z}_2^{ω} embeds into S_{∞} .

Sketch of proof (continued).

Claim

Assume G is a group, H is a subgroup of G of index $< \mathfrak{c}$ in G, such that $x^2 \neq 1$ for every $x \in H \setminus \{1\}$. Then $S_{\infty} \nleftrightarrow G$.

Proof.

The group \mathbb{Z}_2^{ω} embeds into S_{∞} .

Finally, $S_{\infty} \approx \operatorname{Aut}(M)$, where $M = C^U$ (so $C^M = C^U$ and $G^M = \emptyset$). By the Claim above, $S_{\infty} \nleftrightarrow \operatorname{Aut}(U)$.

There exists a countable homogeneous relational structure M such that:

- Aut(*M*) is torsion-free,
- for every $n \in \mathbb{N}$ there is a finite $A \subseteq M$ with $S_n \approx \operatorname{Aut}(A)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There exists a countable homogeneous relational structure M such that:

- Aut(M) is torsion-free,
- for every $n \in \mathbb{N}$ there is a finite $A \subseteq M$ with $S_n \approx \operatorname{Aut}(A)$.

Sketch of proof.

Let \mathscr{F} be the class of all finite bipartite graphs with the left-hand side linearly ordered.

3

There exists a countable homogeneous relational structure M such that:

- Aut(M) is torsion-free,
- for every $n \in \mathbb{N}$ there is a finite $A \subseteq M$ with $S_n \approx \operatorname{Aut}(A)$.

Sketch of proof.

Let \mathscr{F} be the class of all finite bipartite graphs with the left-hand side linearly ordered.

Claim

F is a Fraïssé class.

There exists a countable homogeneous relational structure M such that:

- Aut(M) is torsion-free,
- for every $n \in \mathbb{N}$ there is a finite $A \subseteq M$ with $S_n \approx \operatorname{Aut}(A)$.

Sketch of proof.

Let \mathscr{F} be the class of all finite bipartite graphs with the left-hand side linearly ordered.

Claim

F is a Fraïssé class.

Let *M* be the Fraïssé limit of \mathscr{F} . Then *M* is as required.

Question (Tsankov)

Does there exist a transitive Fraïssé limit whose automorphism group is universal?

< 🗇 🕨

Question (Tsankov)

Does there exist a transitive Fraïssé limit whose automorphism group is universal?

< 🗇 🕨

Some more references

- R. Fraïssé, Sur lextension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388
- J. Grebík, An example of a Fraïssé class without a Katětov functor, Appl. Categor. Struct. 26 (2018) 1–6
- E. Jaligot, On stabilizers of some moieties of the random tournament, Combinatorica 27 (2007) 129–133
- W. Kubiś, D. Mašulović, *Katětov functors*, Applied Categorical Structures 25 (2017) 569–602
- W. Kubiś, S. Shelah, *Homogeneous structures with non-universal automorphism groups*, preprint, arXiv:1811.09650

3

A B > A B >

Uncountable Fraïssé limits

æ

イロト イヨト イヨト イヨト

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 53/66

2

Definition

A weak Fraïssé sequence sequence is a sequence $\vec{u} \colon \kappa \to \mathfrak{K}$, where κ is an infinite cardinal, satisfying the following conditions:

• For every $A \in Obj(\mathfrak{K})$ there is $\alpha < \kappa$ such that $\mathfrak{K}(A, U_{\alpha}) \neq \emptyset$.

EN 4 EN

Definition

A weak Fraïssé sequence sequence is a sequence $\vec{u} \colon \kappa \to \mathfrak{K}$, where κ is an infinite cardinal, satisfying the following conditions:

• For every $A \in Obj(\mathfrak{K})$ there is $\alpha < \kappa$ such that $\mathfrak{K}(A, U_{\alpha}) \neq \emptyset$.

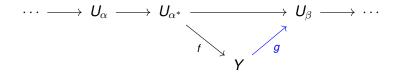
2 For every α there exists $\alpha^* > \alpha$ such that for every \mathfrak{K} -arrow $f: U_{n^*} \to Y$ there are $\beta > \alpha^*$ and a \mathfrak{K} -arrow $g: Y \to U_\beta$ with $g \circ f \circ u_{\alpha}^{\alpha^*} = u_{\alpha}^{\beta}$.

4 3 5 4 3 5 5

Definition

A weak Fraïssé sequence sequence is a sequence $\vec{u} \colon \kappa \to \mathfrak{K}$, where κ is an infinite cardinal, satisfying the following conditions:

- For every $A \in Obj(\mathfrak{K})$ there is $\alpha < \kappa$ such that $\mathfrak{K}(A, U_{\alpha}) \neq \emptyset$.
- 2 For every α there exists $\alpha^* > \alpha$ such that for every \Re -arrow $f: U_{n^*} \to Y$ there are $\beta > \alpha^*$ and a \Re -arrow $g: Y \to U_{\beta}$ with $g \circ f \circ u_{\alpha}^{\alpha^*} = u_{\alpha}^{\beta}$.



A B > A B >

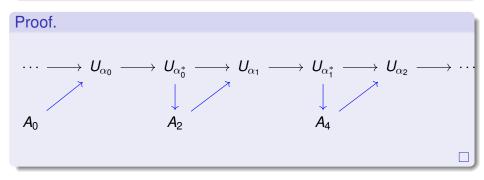
Theorem

Assume $\kappa \ge \aleph_0$ is a regular cardinal, \vec{u} is a continuous weak Fraïssé sequence in \Re with $U = \lim \vec{u}$ in \mathfrak{L} . Then U is \Re -generic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Assume $\kappa \ge \aleph_0$ is a regular cardinal, \vec{u} is a continuous weak Fraïssé sequence in \Re with $U = \lim \vec{u}$ in \mathfrak{L} . Then U is \Re -generic.



vi. (ubis (http://www.math.cas.cz/kubis/	W.Kubiś	(http://www.math.cas.cz/kubis	/)
--	---------	-------------------------------	----

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating in \mathfrak{K} if

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 55/66

э

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating in \mathfrak{K} if

• for every $X \in \text{Obj}(\mathfrak{K})$ there is $F \in \text{Obj}(\mathscr{F})$ with $\mathfrak{K}(X, F) \neq \emptyset$,

3

< ロ > < 同 > < 回 > < 回 >

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating in \mathfrak{K} if

• for every $X \in \text{Obj}(\mathfrak{K})$ there is $F \in \text{Obj}(\mathscr{F})$ with $\mathfrak{K}(X, F) \neq \emptyset$,

2 for every \mathfrak{K} -arrow $f \colon F \to Y$ with $F \in \operatorname{Obj}(\mathscr{F})$ there is a \mathfrak{K} -arrow $g \colon Y \to G$ such that $g \circ f \in \mathscr{F}$ (in particular $G \in \operatorname{Obj}(\mathscr{F})$).

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating in \mathfrak{K} if

• for every $X \in \text{Obj}(\mathfrak{K})$ there is $F \in \text{Obj}(\mathscr{F})$ with $\mathfrak{K}(X, F) \neq \emptyset$,

2 for every \mathfrak{K} -arrow $f \colon F \to Y$ with $F \in \operatorname{Obj}(\mathscr{F})$ there is a \mathfrak{K} -arrow $g \colon Y \to G$ such that $g \circ f \in \mathscr{F}$ (in particular $G \in \operatorname{Obj}(\mathscr{F})$).

Theorem

Assume κ is a regular cardinal, sequences of length $< \kappa$ have colimits in \Re , and \Re is dominated by a subcategory of size $\leq \kappa$. Then there exists a continuous weak Fraïssé sequence in \Re .

Theorem

Let κ be a regular cardinal, let \vec{u} be a weak Fraïssé sequence in \Re with

 $U = \lim \vec{u} \in \operatorname{Obj}(\mathfrak{L}).$

Assume every \mathfrak{L} -object is the colimit of a κ -sequence in \mathfrak{K} .

A B >
A B >

Theorem

Let κ be a regular cardinal, let \vec{u} be a weak Fraïssé sequence in \Re with

 $U = \lim \vec{u} \in \operatorname{Obj}(\mathfrak{L}).$

Assume every \mathfrak{L} -object is the colimit of a κ -sequence in \mathfrak{K} . If \mathfrak{K} has the amalgamation property then

- ū is Fraïssé,
- U is *R*-homogeneous,
- U is \mathfrak{L} -cofinal, that is, $\mathfrak{L}(X, U) \neq \emptyset$ for every $X \in Obj(\mathfrak{L})$.

(B) (A) (B) (A)

Let \Re be the category of all countable linearly ordered sets with left-invertible increasing mappings.

Let \Re be the category of all countable linearly ordered sets with left-invertible increasing mappings.

Definition

An arrow $f: X \to Y$ is left-invertible if $g \circ f = id_X$ for some $g: Y \to X$.

3

イロト 不得 トイヨト イヨト

Let \Re be the category of all countable linearly ordered sets with left-invertible increasing mappings.

Definition

An arrow $f: X \to Y$ is left-invertible if $g \circ f = id_X$ for some $g: Y \to X$.

Let

$$\mathsf{Obj}(\mathscr{F})=\{\mathbb{Q}\},\qquad \mathscr{F}(\mathbb{Q},\mathbb{Q})=\{\mathsf{id}_{\mathbb{Q}},\boldsymbol{\textit{e}}\},$$

where $e: \mathbb{Q} \to \mathbb{Q}$ is isomorphic to the canonical embedding of \mathbb{Q} into $\mathbb{Q} \cdot \mathbb{Q}$, defined by $r \mapsto \langle r, \mathbf{0} \rangle$.

Let \Re be the category of all countable linearly ordered sets with left-invertible increasing mappings.

Definition

An arrow $f: X \to Y$ is left-invertible if $g \circ f = id_X$ for some $g: Y \to X$.

Let

$$\mathsf{Obj}(\mathscr{F})=\{\mathbb{Q}\},\qquad \mathscr{F}(\mathbb{Q},\mathbb{Q})=\{\mathsf{id}_{\mathbb{Q}},\boldsymbol{\textit{e}}\},$$

where $e: \mathbb{Q} \to \mathbb{Q}$ is isomorphic to the canonical embedding of \mathbb{Q} into $\mathbb{Q} \cdot \mathbb{Q}$, defined by $r \mapsto \langle r, \mathbf{0} \rangle$.

Claim

 \mathfrak{K} has the AP and \mathscr{F} is dominating in \mathfrak{K} .

References:

 W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014) 1755–1811

(B)

Image: A matrix and a matrix

References:

- W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014) 1755–1811
- M. Droste, R. Göbel, A categorical theorem on universal objects and its application in abelian group theory and computer science, in: Proceedings of the International Conference on Algebra, Part 3, Novosibirsk, 1989, in: Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992, pp. 49–74

References:

- W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014) 1755–1811
- M. Droste, R. Göbel, A categorical theorem on universal objects and its application in abelian group theory and computer science, in: Proceedings of the International Conference on Algebra, Part 3, Novosibirsk, 1989, in: Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992, pp. 49–74
- T. Irwin, S. Solecki, *Projective Fraïssé limits and the pseudo-arc*, Trans. Amer. Math. Soc. 358 (2006) 3077–3096

Continuous Fraïssé limits

æ

イロト イヨト イヨト イヨト

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 60 / 66

æ

Definition

A normed category is a category \mathfrak{L} enriched over metric spaces, endowed with a function $\mu \colon \mathfrak{L} \to [0, +\infty]$, called a norm, satisfying

(B)

< 6 b

Definition

A normed category is a category \mathfrak{L} enriched over metric spaces, endowed with a function $\mu \colon \mathfrak{L} \to [0, +\infty]$, called a norm, satisfying

 $(\mathcal{N}1) \mu(\mathrm{id}_x) = 0$ for every object *x*.

(B)

Definition

A normed category is a category \mathfrak{L} enriched over metric spaces, endowed with a function $\mu \colon \mathfrak{L} \to [0, +\infty]$, called a norm, satisfying

 $(\mathcal{N}1) \mu(\mathrm{id}_x) = 0$ for every object *x*.

 $(\mathscr{N}2) \ \mu(f \circ g) \leqslant \mu(f) + \mu(g)$ whenever $f \circ g$ is defined.

(B)

Definition

A normed category is a category \mathfrak{L} enriched over metric spaces, endowed with a function $\mu \colon \mathfrak{L} \to [0, +\infty]$, called a norm, satisfying

 $(\mathcal{N}1) \mu(\mathrm{id}_x) = 0$ for every object *x*.

 $(\mathscr{N}2) \ \mu(f \circ g) \leqslant \mu(f) + \mu(g)$ whenever $f \circ g$ is defined.

 $(\mathscr{N}3) \ \mu(g) \leqslant \mu(f \circ g) + \mu(f)$ whenever $f \circ g$ is defined.

3

A B > A B >

Definition

A normed category is a category \mathfrak{L} enriched over metric spaces, endowed with a function $\mu \colon \mathfrak{L} \to [0, +\infty]$, called a norm, satisfying

 $(\mathcal{N}1) \mu(\mathrm{id}_x) = 0$ for every object *x*.

 $(\mathscr{N}$ 2) $\mu(f \circ g) \leqslant \mu(f) + \mu(g)$ whenever $f \circ g$ is defined.

 $(\mathscr{N}3) \ \mu(g) \leqslant \mu(f \circ g) + \mu(f)$ whenever $f \circ g$ is defined.

Furthermore, μ is uniformly continuous, namely, for every $\varepsilon>$ 0 there is $\delta>$ 0 such that

$$|\mu(f) - \mu(g)| < \varepsilon$$

whenever $\varrho(f,g) < \delta$.

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects

26.01-2.02.2019 61 / 66

æ

Lemma

 $\mu(h) = \mu(h^{-1})$ whenever h is an isomorphism.

-2

イロン イ団 とく ヨン ・ ヨン …

Lemma

 $\mu(h) = \mu(h^{-1})$ whenever h is an isomorphism.

Proof.

Let x = dom(h). By $(\mathcal{N}3)$ and $(\mathcal{N}1)$, $\mu(h) \leq \mu(\text{id}_x) + \mu(h^{-1}) = \mu(h^{-1})$. Replacing h by h^{-1} leads to $\mu(h^{-1}) \leq \mu(h)$.

Lemma

 $\mu(h) = \mu(h^{-1})$ whenever h is an isomorphism.

Proof.

Let x = dom(h). By $(\mathcal{N}3)$ and $(\mathcal{N}1)$, $\mu(h) \leq \mu(\text{id}_x) + \mu(h^{-1}) = \mu(h^{-1})$. Replacing h by h^{-1} leads to $\mu(h^{-1}) \leq \mu(h)$.

Definition

Isomorphisms of norm 0 will be called isometries.

A motivating example

Example

Let $\mathfrak L$ be the category of Banach spaces with non-expansive linear operators. Define

 $\mu(f) = \inf\{\|i - j \circ f\|: i, j \text{ are isometric embeddings compatible with } f\}.$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A motivating example

Example

Let \mathfrak{L} be the category of Banach spaces with non-expansive linear operators. Define

 $\mu(f) = \inf\{\|i - j \circ f\|: i, j \text{ are isometric embeddings compatible with } f\}.$

Lemma (Solecki & K.)

If f is an ε -isometry, $0 < \varepsilon < 1$ then $\mu(f) \leq \varepsilon$.

A motivating example

Example

Let \mathfrak{L} be the category of Banach spaces with non-expansive linear operators. Define

 $\mu(f) = \inf\{\|i - j \circ f\|: i, j \text{ are isometric embeddings compatible with } f\}.$

Lemma (Solecki & K.)

If f is an ε -isometry, $0 < \varepsilon < 1$ then $\mu(f) \leq \varepsilon$.

It is easy to see that μ is a norm on \mathfrak{L} .

The setup (continued)

We assume \mathfrak{K} is a full subcategory of a normed category \mathfrak{L} .

 $\mathfrak{L}_0 := \{ f \in \mathfrak{L} \colon \mu(f) = 0 \}, \quad \mathfrak{K}_0 := \mathfrak{K} \cap \mathfrak{L}_0.$

э

The setup (continued)

We assume \Re is a full subcategory of a normed category \mathfrak{L} .

$$\mathfrak{L}_{0} := \{ f \in \mathfrak{L} \colon \mu(f) = 0 \}, \quad \mathfrak{K}_{0} := \mathfrak{K} \cap \mathfrak{L}_{0}.$$

Definition

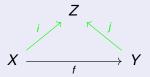
We say that \Re has the almost amalgamation property if for every \Re_0 -arrows $f: Z \to X, g: Z \to Y$ for every $\varepsilon > 0$ there are \Re_0 -arrows $f': X \to W, g': Y \to W$ satisfying

 $\varrho(f' \circ f, g' \circ g) < \varepsilon.$

Definition

We say that the norm μ is stable if for every $\varepsilon > 0$ there is $\delta > 0$ such that for every $f \in \mathfrak{K}$ with $\mu(f) < \delta$ there are compatible $i, j \in \mathfrak{K}_0$ such that

 $\varrho(i,j\circ f)<\varepsilon.$



E 5 4 E

< 6 b

Theorem

Under suitable assumptions on $\mathfrak{K} \subseteq \mathfrak{L}$, there exists a \mathfrak{K} -generic object U in \mathfrak{L} .

э

Theorem

Under suitable assumptions on $\mathfrak{K} \subseteq \mathfrak{L}$, there exists a \mathfrak{K} -generic object U in \mathfrak{L} . Furthermore:

• For every $X \in Obj(\mathfrak{L})$ there is $e \colon X \to U$ with $\mu(e) = 0$.

3

Theorem

Under suitable assumptions on $\Re \subseteq \mathfrak{L}$, there exists a \Re -generic object U in \mathfrak{L} . Furthermore:

- For every $X \in Obj(\mathfrak{L})$ there is $e \colon X \to U$ with $\mu(e) = 0$.
- ② U is approximately ℜ₀-homogeneous. Namely, given ε > 0, given ℜ₀-arrows i: A → U, j: A → U there is an isometry h: U → U such that ρ(h ∘ i, j) < ε.</p>

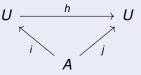
3

A B A A B A

Theorem

Under suitable assumptions on $\Re \subseteq \mathfrak{L}$, there exists a \Re -generic object U in \mathfrak{L} . Furthermore:

- For every $X \in Obj(\mathfrak{L})$ there is $e \colon X \to U$ with $\mu(e) = 0$.
- ② U is approximately ℜ₀-homogeneous. Namely, given ε > 0, given ℜ₀-arrows i: A → U, j: A → U there is an isometry h: U → U such that ρ(h ∘ i, j) < ε.</p>

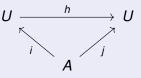


(B)

Theorem

Under suitable assumptions on $\Re \subseteq \mathfrak{L}$, there exists a \Re -generic object U in \mathfrak{L} . Furthermore:

- For every $X \in Obj(\mathfrak{L})$ there is $e \colon X \to U$ with $\mu(e) = 0$.
- 2 *U* is approximately \Re_0 -homogeneous. Namely, given $\varepsilon > 0$, given \mathfrak{L}_0 -arrows $i: A \to U, j: A \to U$ there is an isometry $h: U \to U$ such that $\varrho(h \circ i, j) < \varepsilon$.



Source:

• W. Kubiś, *Metric-enriched categories and approximate Fraïssé limits*, preprint, [arXiv:1210.6506]

(日)

Selected Applications

- W. Kubiś, A. Kwiatkowska, The Lelek fan and the Poulsen simplex as Fraïssé limits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111 (2017) 967–981
- J. Garbulińska-Wegrzyn, W. Kubiś, *A universal operator on the Gurarii space*, Journal of Operator Theory 73 (2015) 143–158
- F. Cabello Sanchez, J. Garbulińska-Wegrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744–771

3

A B > A B >

Selected Applications

- W. Kubiś, A. Kwiatkowska, The Lelek fan and the Poulsen simplex as Fraïssé limits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111 (2017) 967–981
- J. Garbulińska-Wegrzyn, W. Kubiś, *A universal operator on the Gurarii space*, Journal of Operator Theory 73 (2015) 143–158
- F. Cabello Sanchez, J. Garbulińska-Wegrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744–771
- I. Ben Yaacov, Fraïssé limits of metric structures, Journal of Symbolic Logic 80 (2015) 100–115
- M. Lupini, Fraïssé limits in functional analysis, preprint [arXiv:1510.05188]

3

Selected Applications

- W. Kubiś, A. Kwiatkowska, The Lelek fan and the Poulsen simplex as Fraïssé limits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111 (2017) 967–981
- J. Garbulińska-Wegrzyn, W. Kubiś, *A universal operator on the Gurarii space*, Journal of Operator Theory 73 (2015) 143–158
- F. Cabello Sanchez, J. Garbulińska-Wegrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744–771
- I. Ben Yaacov, Fraïssé limits of metric structures, Journal of Symbolic Logic 80 (2015) 100–115
- M. Lupini, *Fraïssé limits in functional analysis*, preprint [arXiv:1510.05188]

Thank you for your attention!

-